进入高德地图首页,点击右上方“设置”图标
《高德地图》天气地图查看方法
2、点击进入后就可以看到右侧列表里的“天气地图”了
《高德地图》天气地图查看方法
3、系统会准确获取定位城市的天气信息,为大家及时更新天气情况
4、上划还有详细的7天内天气预报
气象雷达是怎么检测天气的?我国古代神话中有千里眼和顺风耳的故事。而雷达就是科学的千里眼。雷达是一种无线电装置,其英文名称是RADAR(即Radio Detecting and Ranging的缩写),是无线电探测和定位的意思。早期的雷达主要用于军事目的。现在已广泛用于航空、航海、气象、科学研究等各个方面。用来观云测雨的雷达,就是天气雷达,已成为气象部门监测天气实况和预报未来天气的有力工具。
专门用于大气探测的雷达,属于主动式微波大气遥感设备。与无线电探空仪配套使用的高空风测风雷达,只是一种对位移气球定位的专门设备,一般不算作此类雷达。气象雷达是用于警戒和预报中、小尺度天气系统(如台风和暴雨云系)的主要探测工具之一。
气象雷达
气象雷达通过方向性很强的天线向空间发射脉冲无线电波,它在传播过程中和大气发生各种相互作用。如大气中水汽凝结物(云、雾和降水)对雷达发射波的散射和吸收;非球形粒子对圆极化波散射产生的退极化作用,无线电波的空气折射率不均匀结构和闪电放电形成的电离介质对入射波的散射,稳定层结大气对入射波的部分反射;以及散射体积内散射目标的运动对入射波产生的多普勒效应等。
气象雷达回波不仅可以确定探测目标的空间位置、形状、尺度、移动和发展变化等宏观特性,还可以根据回波信号的振幅、相位、频率和偏振度等确定目标物的各种物理特性,例如云中含水量、降水强度、风场、铅直气流速度、大气湍流、降水粒子谱、云和降水粒子相态以及闪电等。此外,还可利用对流层大气温度和湿度随高度的变化而引起的折射率随高度变化的规律,由探测得到的对流层中温度和湿度的铅直分布求出折射率的铅直梯度,并通过分析无线电波传播的条件,预报雷达的探测距离,也可根据雷达探测距离的异常现象(如超折射现象)推断大气温度和湿度的层结。
雷达定位的基本原理并不复杂。雷达定向地发射出电磁波(称为发射波),发射波遇到目标物后被,散射波的一部分由雷达接收下来。雷达采用极坐标扫描方式,记录下雷达所指向的方位,就确定了目标物相对于雷达的方位。有了距离和方位,目标物这个点就定下来了。云雨是一种特殊的目标物。云雨中的云滴、雨滴、雪晶、冰粒等降水粒子能够散射雷达波,当它们散射回来的能量足够大时,雷达就能识别出来,而在雷达荧光屏上显示出云雨的彩色图像,这就更为直观和定量。训练有素的雷达工作人员根据这些图像,判断这个云雨目标物的性质,是降雨还是降雹,是否伴有雷电大风,未来移向何处,是加强还是减弱等。
多普勒天气雷达是利用多普勒效应工作的。不知你是否有过这种体验,当你位于火车站台上,远处有一列火车向着你驶来时,你听到火车的鸣笛声会变得越来越尖锐;当这辆列车经过你面前又逐渐远去时,火车鸣笛声会变得越来越低沉。这是由于声源对于你有相对运动,你感受到的声源频率有所改变了。这就是多普勒效应。多普勒天气雷达在探测云雨时,云滴等降水粒子相对于雷达也有运动,这个运动在雷达所指的经向上有个分量,这个分量是朝向雷达或者背离雷达的,由于多普勒效应降水粒子散射回来的雷达波(称为回波)的频率比发射雷达波有所偏离。多普勒雷达能测量到这个频率偏移,通过这个频率偏移来了解云中降水粒子的运动情况,从中提取丰富的气象信息。因而具有多普勒功能的天气雷达,对于监测雷雨大风、冰雹大风、龙卷、下击暴流、低层风切变等强对流天气更为有利。多普勒天气雷达在定量测量降水量方面,也具有更先进的功能,还能增强我们对暴雨的监测能力。
天气预报是怎么做到精准预测的?天气预报做到精准预测是因为观测雷达的采集覆盖做到的。
最近北京持续高温,女朋友突然说,“好希望天气预报能报不准!”
“为啥啊?”我百思不得解。
“报不准嘛,比如,突然来一场雷雨降降温,或者,预报37摄氏度其实30摄氏度也行!”
我的女朋友,果然脑回路与众不同呢。不过我还是对她说,“这基本不可能。现代天气预报可是很准的。”
“虽然这么说,但在我的印象中,天气预报以前也报错过啊。”
“确实有报不准的情况,但是概率很小,而且这种情况会越来越少,不信你看。
”现代的天气预报是如何进行的?
要说现代天气预报有多准,可以先看看现代天气预报是怎么做的。
“东风不与周郎便,铜雀春深锁二乔”。自古以来,小到黎民百姓的生产生活,大到国家民族间的兵戎相见,都免不了受到当时天气的影响和制约。古人对于天气的预测纯属来自千万年口耳相传的观测经验,偶然性相当大。近代以来,随着雷达技术,卫星技术以及计算机技术的进步,人类不光能从地面获知大气层的变化动态,更能从遥远的太空俯瞰广大的地表区域,实现对灾害性天气事件的预防和日常天气的预报。
现代的天气预报系统,主要分为地上气象观测站,地面气象雷达系统,高层大气气象观测,气象卫星以及数据解析中心等几种分工不同,各有侧重的观测网络体系。
地上气象站主要负责采集各地的气压、气温、湿度、风向、风速、降水量、积雪深度、日照时间、云量以及空气质量等气象数据。这些数据一方面用于与其他途径采集的大气活动信息进行汇总,以便进行实时天气预报,另一方面则形成数据库,作为长期研究气候变动的宝贵资料。
地面气象雷达系统通过建立在各地的雷达设施向所在空域云层发射厘米级波长的电磁波,来观测数百公里范围内云层中的凝结核、冰晶以及雨滴或雪花的形成情况。雷达获得的数据再与地面观测站的实测结果进行汇总分析,从而实现对雨雪天气的预报。
左:地上气象站, 右:地面气象雷达站
高层大气气象观测主要通过释放无线电探空仪和布置风廓线雷达实现。前者可以认为是地面气象站的高空版,可以实现收集约三十千米高空处气象数据的功能。后者可以认为是地面雨雪气象雷达的孪生兄弟,主要测量高空中的风速和风向等信息。
气象卫星位于这个由低到高层次分明的观测网络的最上方,主要负责监测大范围区域内的气象变化,特别是台风一类的灾害性气象事件。
此外,云层在数天内的变化趋势,大范围的海水温度分布,森林火灾的预警和监测,对于气象卫星来说都不过是略施身手,农业害虫的迁徙,火山活动的监测,海水潮位的异常变化也都难逃气象卫星法眼。
以超级计算机作为核心的信息处理中心堪称整个气象监控与预报网络的大脑。各级观测设施,装置中收集到的无数琐碎信息,经过超级计算机的运算,多重因素复合作用下的复杂动态过程亦可轻松模拟。小到当天某时某地的天气精准预报,大到全国范围内整个季节中降水量与往年平均值的相对大小,超级计算机可谓是无所不知。
天气预报会“报不准”吗?
即使有了这么强大的预报系统,我们还是不得不承认,天气预报确实有时会“报不准”。为什么呢?
这个问题一般来说受到两个因素制约。
首先,现代天气预报早已不是曾经的全市统一,一天播报一次,而是定位精准并且实时更新。正如上面所述,天气变化是一个多因素作用下的极端复杂体系,现今的技术很难实现数小时后的精确预报,但是大城市局地的短时预报精准度还是相当高的。很多人的习惯还停留在当年的头天晚上收听第二天的天气预报,最后发生偏差也是情理之中了。
其次,夏天的锋面雨等短时强对流天气,由于其演化规律突然性大,即便是超级计算机也时常有心无力,无法精准预知。但是,做到在强对流天气发生一两个小时前实现应急预警,目前的技术还是把握颇大的。
在气象预报方面,人类从无知懵懂到小有所成,技术进步的脚步仍然坚定向前,天气预报的精准度和有效预测时间还会逐渐增加。
如何提高气象预报特别是降雨预报的精确性?
为了减少“报不准”的情况,提高预报精度,可以加强对各大气象预报系统的硬件建设投入,只有拥有了遍布城乡的观测和雷达系统,覆盖区域上空的气象卫星网络,才能实现气象预报数据的有效采集,预报精度自然随之上升。比如,国土狭小人口密集,技术、资金实力雄厚的日本拥有密度远超一般国家的气象信息采集系统,其气象预报的精准程度超过中国乃至其它发达国家也就不足为奇了。
看来,与其盼天气预报不准,可能还不如盼“雨神”来一下,突然来场雨的希望更大。