ln函数的运算法则:ln(MN)=lnM+lnN,ln(M/N)=lnM-lnN,ln(M^n)=nlnM,ln1=0,lne=1,注意,拆开后,M,N需要大于0。没有ln(M+N)=lnM+lnN,和ln(M-N)=lnM-lnN,lnx是e^x的反函数。
推导公式:
1、log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)
2、loga(b)*logb(a)=1
3、loge(x)=ln(x)
4、lg(x)=log10(x)
log(a)(b)表示以a为底b的对数。
换底公式拓展:以e为底数和以a为底数的公式代换:logae=1/(lna)
表达方式:
1.常用对数:lg(b)=log(10)(b)
2.自然对数:ln(b)=log(e)(b)
通常情况下只取e=2.71828对数函数的定义
对数函数的一般形式为y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称。
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
自然对数是以常数e为底数的对数,记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义,一般表示方法为lnx。数学中也常见以logx表示自然对数。