正整数为0以上的整数,也是正整数与整数的交集。正整数一般采用N,正整数一般采用N 表示,可以带正号( ),也可能没有。正整数可分为质数、1和合数。0既不是正整数,也不是负整数。正整数集是所有正整数的集合,包括从1开始的所有自然数。通常使用符号N 、N*、N1、N>0表示。
整数可分为三类:
1.正整数,即大于0的整数,如1、2、3..N。
2.、0既不是正整数,也不是负整数(0是整数)。
3.负整数,即整数低于0,如,-1,-2,-3..-N。
扩展阅读人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。
(这里所谓的正整数,是相对于负整数和0而言的。)它们合起来叫做整数。(注:现在,自然数的概念有了改变,包括正整数和0)素因数(或称素因子)在数论里是指能整除给定正整数的素数。根据算术基本定理,不考虑排列顺序的情况下,每个正整数都能够以唯一的方式表示成它的素因数的乘积。两个没有共同素因子的正整数称为互素。因为1没有素因子,与任何正整数(包括1本身)都是互素。只有一个素因子的正整数为素数。